46 research outputs found

    Dynamic Modeling and Statistical Analysis of Event Times

    Get PDF
    This review article provides an overview of recent work in the modeling and analysis of recurrent events arising in engineering, reliability, public health, biomedicine and other areas. Recurrent event modeling possesses unique facets making it different and more difficult to handle than single event settings. For instance, the impact of an increasing number of event occurrences needs to be taken into account, the effects of covariates should be considered, potential association among the interevent times within a unit cannot be ignored, and the effects of performed interventions after each event occurrence need to be factored in. A recent general class of models for recurrent events which simultaneously accommodates these aspects is described. Statistical inference methods for this class of models are presented and illustrated through applications to real data sets. Some existing open research problems are described.Comment: Published at http://dx.doi.org/10.1214/088342306000000349 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Pranab Kumar Sen: Life and works

    Full text link
    In this article, we describe briefly the highlights and various accomplishments in the personal as well as the academic life of Professor Pranab Kumar Sen.Comment: Published in at http://dx.doi.org/10.1214/193940307000000013 the IMS Collections (http://www.imstat.org/publications/imscollections.htm) by the Institute of Mathematical Statistics (http://www.imstat.org

    Power-enhanced multiple decision functions controlling family-wise error and false discovery rates

    Get PDF
    Improved procedures, in terms of smaller missed discovery rates (MDR), for performing multiple hypotheses testing with weak and strong control of the family-wise error rate (FWER) or the false discovery rate (FDR) are developed and studied. The improvement over existing procedures such as the \v{S}id\'ak procedure for FWER control and the Benjamini--Hochberg (BH) procedure for FDR control is achieved by exploiting possible differences in the powers of the individual tests. Results signal the need to take into account the powers of the individual tests and to have multiple hypotheses decision functions which are not limited to simply using the individual pp-values, as is the case, for example, with the \v{S}id\'ak, Bonferroni, or BH procedures. They also enhance understanding of the role of the powers of individual tests, or more precisely the receiver operating characteristic (ROC) functions of decision processes, in the search for better multiple hypotheses testing procedures. A decision-theoretic framework is utilized, and through auxiliary randomizers the procedures could be used with discrete or mixed-type data or with rank-based nonparametric tests. This is in contrast to existing pp-value based procedures whose theoretical validity is contingent on each of these pp-value statistics being stochastically equal to or greater than a standard uniform variable under the null hypothesis. Proposed procedures are relevant in the analysis of high-dimensional "large MM, small nn" data sets arising in the natural, physical, medical, economic and social sciences, whose generation and creation is accelerated by advances in high-throughput technology, notably, but not limited to, microarray technology.Comment: Published in at http://dx.doi.org/10.1214/10-AOS844 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Estimating Load-Sharing Properties in a Dynamic Reliability System

    Get PDF
    An estimator for the load-share parameters in an equal load-share model is derived based on observing k-component parallel systems of identical components that have a continuous distribution function F (˙) and failure rate r (˙). In an equal load-share model, after the first of k components fails, failure rates for the remaining components change from r (t) to γ1r (t), then to γ2r (t) after the next failure, and so on. On the basis of observations on n independent and identical systems, a semiparametric estimator of the component baseline cumulative hazard function R = –log(1 – F) is presented, and its asymptotic limit process is established to be a Gaussian process. The effect of estimation of the load-share parameters is considered in the derivation of the limiting process. Potential applications can be found in diverse areas, including materials testing, software reliability, and power plant safety assessment

    Classes of Multiple Decision Functions Strongly Controlling FWER and FDR

    Full text link
    This paper provides two general classes of multiple decision functions where each member of the first class strongly controls the family-wise error rate (FWER), while each member of the second class strongly controls the false discovery rate (FDR). These classes offer the possibility that an optimal multiple decision function with respect to a pre-specified criterion, such as the missed discovery rate (MDR), could be found within these classes. Such multiple decision functions can be utilized in multiple testing, specifically, but not limited to, the analysis of high-dimensional microarray data sets.Comment: 19 page
    corecore